Calculus

Lesson 28

Inverse Functions

Back to Dr. Nandor's Calculus Notes Page

 Back to Dr. Nandor's Calculus Page

 

 

             and  are inverse functions if

                                    for all  in the domains of both and .

 

 

                                    The notation is  and

 

 

 

                        Example:  if  then  as long as

 

                                                (you don't know how to find  yet, but we can test

                                                            to make sure that it is true!)

 

                        Example:  if  then  as long as

 

 

                         has an inverse iff it is 1-1.  That is, it must be a function and it must be

                                    monotonic (it must pass both the horizontal and vertical line tests).

 

                        Plot  to show that  has an inverse and  does not.

 

            Steps to finding inverse functions:

 

            1)         does  even have an inverse?

 

            2)         rewrite  as  and solve  for .

 

            3)         interchange  and .

 

            4)         check that

 

            5)         domain and range of  must be the same as range and domain of

 

 

 

 

                        Examples:     (check domain/range for each!!)

 

 

 

 

 

 

 
 

 

 


            Finally, note that   (slopes are NOT perpendicular, but related)

 

On to Lesson 29 - ex

Back to Dr. Nandor's Calculus Notes Page

 Back to Dr. Nandor's Calculus Page