Calculus

Lesson 51

Comparison of Series

Back to Dr. Nandor's Calculus Notes Page

 Back to Dr. Nandor's Calculus Page

 

 

                        Next test of convergence:  Comparison (two methods).

 

            Direct Comparison:  let  for all n, then

                        if  converges, then  converges.

                        if  diverges, then  diverges.

 

                        This is basically a squeeze theorem!

 

 

 

           

                        Example:                     To check, note that it looks like ,

                                                            so that's what we'll compare it to.

 

                                                Since  converges and we know ,

                                                we also know  converges.

 

 

 

 

                        Example:       We could compare it to , which diverges.

                                    However, since , so the test doesn't tell us anything.

                                    But, we CAN compare the series to  diverges and  

                                    for , so  diverges.

 

 

 

 

 

 

 

 

 

            There's also the Limit Comparison Test:  for

 

            if  then  and  either both converge or both diverge.

 

 

 

            Examples:                           take limit with    

 

 

                                                                         take limit with

 

 

 

                                                                      take limit with

 

 

 

                                                  take limit with harmonic

                                    (generalized harmonic)

 

On to Lesson 52 - Alternating Series

Back to Dr. Nandor's Calculus Notes Page

 Back to Dr. Nandor's Calculus Page