Calculus

Lesson 55

Power Series

Back to Dr. Nandor's Calculus Notes Page

 Back to Dr. Nandor's Calculus Page

 

 

                        A Taylor Polynomial is a finite form of a Power Series.

 

 

                        The general form of a power series:   is a power

                        series centered at .

 

                        If , the domain of the series is all s for which

                         converges.

 

 

                       

 

            Exactly one of the following is always true for any power series:

                        1)  it converges only at .

                        2)  always diverges for all s.

                        3)  There exists some  such that  converges absolutely

                                                                                       and  diverges.

 

 

                                                 is the Radius of Convergence:

 

                                                 c - R           c            c + R                            

 

 

                                                Note that the endpoints could be any of (), [], (], [).

                                                We must test to see which one it is.

 

 

 

            Examples:   Find R for all of the following:

                        1)                For , we can use the ratio test.

                                                                            and we need

                                                                        the result to be  for convergence, so

 

                       

 

 

                        2)                           For , we can use the ratio test.

                                                           

 

                                                             There are no values for which it converges, so

 

 

 

                        3)            For , we can use the ratio test.

                    

                    

 

                                                            Since it converges for all values of , infinite radius of

                                                                                                                                    convergence.

 

 

 

 

 

 

 

            There's also the Interval of Convergence:

 

                        From (1) above, it's centered about  with , so now we just need
                        to check .  Neither  and   converge, so the

                        interval of convergence is .

 

 

                        From (2) above, there is no interval of convergence.

 

 

                        From (3) above, the interval of convergence is .

 

 

                        4)                   Centered at .  Use ratio test to find . 

                                                            Alternating harmonic converges and harmonic does not,

                                                            so .

 

 

 

                        5)    

                                                            Centered at .  Use ratio test to find .

                                                            Neither  converges, so .

 

            In the next section, we will be generating many power series.  Each

            power series MUST be accompanied by an interval of convergence!!!!

 

 

            Also, now that we can put things in terms of a power series, we can differentiate and

            integrate term by term.

              

         

 

 

Example: Find the interval convergence of for  

  

    

 

 

 

 

 

 

 

On to Lesson 56 - Obtaining Power Series

Back to Dr. Nandor's Calculus Notes Page

 Back to Dr. Nandor's Calculus Page