Calculus

Lesson 61

Polar Coordinates

Back to Dr. Nandor's Calculus Notes Page

 Back to Dr. Nandor's Calculus Page

 

 

                        Similar to what we just did for parametric equations:

 

                                   

 

 

                        Examples of simple shapes:

                                    Circle:                                                Circle: 

 

                                    Line:                                              Vertical Line:                

 

                                    Spiral: 

 

 

 

 

                        Some hints: if equation does not change when , x-axis symmetry

                                                if equation does not change when , y-axis symmetry

                                                if equation does not change when , origin symmetry

 

 

 

 

                        To sketch:  If there is no easy conversion to rectangular coordinates and

                                                figuring out what it should look like is not easy, try

                                                making a table of  values.

 

 

 

                                    See shapes above for examples, plus  and .

 

 

 

 

 

 

 

                        As an aid to sketching, find slope!  We know that , so

                                   

 

           

                                   

                        So we can find !

                        For tangents:    , it's a horizontal line and vice-versa.

 

           

                                    Examples:

                                     Find all horizontal and vertical tangents:                                   

 

                                   

 

 

                        Other tangent lines:  If   and  then the line  is

                                    a tangent line through the origin.  (we can derive this from our definition of

                                    dy/dx).  So, whenever , if there is a non-zero derivative, then we have

                                    a tangent line!

 

 

                                    Example:  Find all of the tangent lines (both through the origin and

                                                            horizontal and vertical) of  

 

On to Lesson 62 - Area in Polar Coordinates

Back to Dr. Nandor's Calculus Notes Page

 Back to Dr. Nandor's Calculus Page