Calculus

Lesson 49

Series

Back to Dr. Nandor's Calculus Notes Page

 Back to Dr. Nandor's Calculus Page

 

 

                        An Infinite Series is defined as 

 

 

                                    A Partial Sum is

 

 

                                    So  and so on.

 

 

 

 

 

 

            Definition of convergence of a series:

            If the SEQUENCE of partial sums converges, then the SERIES converges (to S)

 

 

 

            Example:      

              but 

 

                                                                                   

 

 

                       

 

 

 

 

 

 

                        The next lessons will all either deal with:

 

                                    1) finding the Sum of a series

 

 

                                                or

 

 

                                    2)  Determining if a series converges

 

                        First, let's look at a special kind of series for which we can find a sum:

 

                       

 

 

                                    This is called a Telescoping Series.  Solve by writing out the first

                                    few terms of Sn, then take limit.

 

 

 

 

            Example:      (use partial fractions, then telescoping)

 

 

 

 

 

 

 

                        A Geometric Series is one whose terms are elements of a Geometric Sequence:

 

 

                           Note the sum is from 0!!

 

 

 

 

 

                        The solution is:     

                        To derive this, the sum must exist to algebraically manipulate it.....

 

 

 

                        Examples:                             

 

                       

 

 

 

 

                        Summation Rules:  const. mult., sum, diff

 

 

 

                        Rule:  if  converges, then .  By contrapositive,

                                    if , then  diverges.

 

 

                                    So this is similar to the second derivative test:  if , then

                                    we know the series must diverge, but if , then we can't

                                    say anything about the convergence of the series.

 

 

 

 

 

 

                        Examples:                                       

 

On to Lesson 50 - Integral Test and P-Series

Back to Dr. Nandor's Calculus Notes Page

 Back to Dr. Nandor's Calculus Page