Calculus

Lesson 50

Integral Test and p-series

Back to Dr. Nandor's Calculus Notes Page

 Back to Dr. Nandor's Calculus Page

 

 

          For ANY series , we can generate a function  such that

                        .  Then, if , continuous, and decreasing for all ,

 

                        then   and    either both converge or both diverge.

 

 

 

 

 

                        Examples:    diverges             and                   converges

 

 

 

 

 

 

 

                        p-series is the same as the special form that we saw when we did indefinite

                        integrals.

 

                           converges when           and       diverges when

 

                                                            prove this with the integral test...

 

 

                                    when , it is a special series called the "harmonic series."

 

 

 

 

 

 

 

            We can also show that it diverges like this:  

                       

                                _____     ___________    _____________

 

                                       >1/2                   >1/2                          >1/2

We know this since 2 (1/4s) would = 1/2 so 1/3 and 1/4 is more.  4 (1/8s) would be 1/2, and 1/5 and 1/6 and 1/7 and 1/8 is more, &c.

 

 

 

 

 

Practice:  For each, determine the convergence:

 

 

 

 

           

 

 

 

 

            Find the values of p for which   converges.  

 

 

 

 

 

 

 

 

 

 

                        Note for integral test:  If the first few terms increase and then the

                                    rest of them decrease, take the first few terms out, then

                                    integrate from the earliest term in the new series to infinity.

 

                        Example: 

 

On to Lesson 51 - Comparison Test

Back to Dr. Nandor's Calculus Notes Page

 Back to Dr. Nandor's Calculus Page